
Building RAG with LlamaIndex (+Tips/Tricks!)
Jerry Liu, LlamaIndex co-founder/CEO

RAG

Context

● LLMs are a phenomenal piece of technology for knowledge generation and
reasoning. They are pre-trained on large amounts of publicly available data.

Use Cases
Question-Answering

Text Generation
Summarization

Planning

LLM’s

Context

● How do we best augment LLMs with our own private data?

Use Cases
Question-Answering

Text Generation
Summarization

Planning

LLM’s

API’sRaw Files

SQL DB’sVector Stores

?

LlamaIndex: A data framework for LLM applications

● Data Management and Query Engine for your LLM application
● Offers components across the data lifecycle: ingest, index, and query over data

Data Ingestion
(LlamaHub 🦙) Data Structures Retrieval and

Query Interface

● Connect your existing
data sources and data
formats (API’s, PDF’s,
docs, SQL, etc.)

● Store and index
your data for
different use cases.
Integrate with
different db’s.

● Given an input prompt,
retrieve relevant context
and synthesize a
knowledge-augmented
output.

LLM App Use Cases

Simple
reasoning

Complex/multistep
reasoning

Passive Interactive

● Q&A over document(s)
● Generative search

(retrieval augmented
generation)

● Conservational agent
● Structured analytics

● Headless agent

● Summarization
● Translation
● Schema extraction

LLM App Use Cases

Simple
reasoning

Complex/multistep
reasoning

Passive Interactive

● Q&A over document(s)
● Generative search

(retrieval augmented
generation)

● Conservational agent
● Structured analytics

● Headless agent

● Summarization
● Translation
● Schema extraction

Challenge: Data Management & Orchestration

Naive RAG Stack for building a QA System

Vector
Database

Doc

Chunk

Chunk

Chunk

Chunk

ChunkChunkChunk LLM

Data Ingestion / Parsing Data Querying

Current RAG Stack (Data Ingestion/Parsing)

Vector
Database

Doc

Chunk

Chunk

Chunk

Chunk

Naive State:
● Split up document(s) into even chunks.
● Each chunk does not contain parent context.
● All chunks are stored in the same collection

in a vector database.

Current RAG Stack (Querying)

Vector
Database

ChunkChunkChunk LLM

Naive State:
● Find top-k most similar chunks from vector

database collection
● Plug into LLM response synthesis module

Challenges with Naive RAG (Response Quality)

● When RAG fails, the most common reason is bad retrieval
○ If the retrieved results are bad, there’s no way the LLM can synthesize a proper response

without hallucinating!
● The most common retrieval method is top-k embedding lookup

Challenges with Naive RAG (Response Quality)

● Causes of bad retrieval quality
○ Each chunk does not have awareness of parent context or related context
○ The query assumes a certain traversal structure that top-k embedding lookup doesn’t utilize.
○ The data is redundant or out of date

Challenges with Naive RAG (System Concerns)

There are also system-level considerations with this stack

● How do you deal with updates in the source document?
○ How do you update stored chunks in the vector database?

Key Lessons

To improve your RAG stack,

Improve the way you define state, not just the retrieval algorithm!

Data Tips/Tricks for Better Performing
RAG

Augmenting Chunks with Context

● One of the reasons embedding retrieval fails is that relevant context chunks
do not match the query embedding

Different Context Augmentation Strategies

We report the
development of GPT-4,

a large-scale,
multimodal…

{“page_num”: 1, “org”:
“OpenAI”}

Metadata

Text Chunk

ChunkChunk Chunk
prev next

Summary

Injecting Metadata Defining Node Relationships

parent

Simple use case:
adding page numbers
to PDF’s allows for
in-line citations

Simple use case:
adding page numbers
to PDF’s allows for
in-line citations

Using LLMs for
Automatic Metadata
Extraction

Decouple Embeddings from Raw Text Chunks

Raw text chunks can bias your embedding representation with filler content (Max Rumpf, sid.ai)

Solutions:

● Embed larger documents via
summaries

● Embed text at the
sentence-level - then expand
that window during LLM
synthesis

● Finetune embeddings over a
specific corpus

Decouple Embeddings from Raw Text Chunks

Organize your data for more structured retrieval

Question: “Can you tell me about Google’s R&D initiatives from 2020 to 2023?”

Dumping chunks to a single collection doesn’t work.

Single Collection of
all 10Q Document

Chunks

2020 10Q chunk 4

top-4 2020 10Q chunk 7

2021 10Q chunk 4

2023 10Q chunk 4

No guarantee you’ll
return the relevant
document chunks!

query_str:
<query_embedding>

Organize your data for more structured retrieval

Question: “Can you tell me about Google’s R&D initiatives from 2020 to 2023?”

Here, we separate and tag the documents with metadata filters.

During query-time, we can infer these metadata filters in addition to semantic query.

2020 10Q

2021 10Q

2022 10Q

2023 10Q

2020 10Q chunk 4

2021 10Q chunk 4

2022 10Q chunk 4

2023 10Q chunk 4

query_str:
<query_embedding>

Metadata tags:
<metadata_tags>

Two main approaches here

Organize your data for more structured retrieval

Data Solutions in LlamaIndex
Define/customize metadata: https://gpt-index.readthedocs.io/en/latest/how_to/customization/custom_documents.html

Automatic metadata extraction: https://gpt-index.readthedocs.io/en/latest/how_to/index/metadata_extraction.html

Document Comparisons:
https://gpt-index.readthedocs.io/en/latest/examples/query_engine/sub_question_query_engine.html

Comparing document structuring approaches:
https://gpt-index.readthedocs.io/en/latest/examples/retrievers/auto_vs_recursive_retriever.html

Sentence-level Retrieval + Expanded Context During LLM Synthesis:

https://gpt-index.readthedocs.io/en/latest/examples/node_postprocessor/MetadataReplacementDemo.html

Handling Document Updates:
https://gpt-index.readthedocs.io/en/latest/how_to/index/usage_pattern.html#handling-document-update

https://gpt-index.readthedocs.io/en/latest/how_to/customization/custom_documents.html
https://gpt-index.readthedocs.io/en/latest/how_to/index/metadata_extraction.html
https://gpt-index.readthedocs.io/en/latest/examples/query_engine/sub_question_query_engine.html
https://gpt-index.readthedocs.io/en/latest/examples/retrievers/auto_vs_recursive_retriever.html
https://gpt-index.readthedocs.io/en/latest/examples/node_postprocessor/MetadataReplacementDemo.html
https://gpt-index.readthedocs.io/en/latest/how_to/index/usage_pattern.html#handling-document-update

